Laver-like indestructibility for measurable cardinals

Radek Honzik

Department of Logic Charles University

logika.ff.cuni.cz/radek

Hejnice January 31, 2017

Some large cardinals

Some large cardinals

We will mention the following large cardinals in the talk (κ denotes the large cardinal, and *j* denotes an elementary embedding with critical point κ):

κ is supercompact if for every cardinal μ ≥ κ there is an embedding j : V → M such that μ < j(κ) and ^μM ⊆ M.

- κ is supercompact if for every cardinal μ ≥ κ there is an embedding j : V → M such that μ < j(κ) and ^μM ⊆ M.
- κ is *strong* if for every cardinal $\mu \ge \kappa$ there is an embedding $j: V \to M$ such that $\mu < j(\kappa)$ and $H(\mu) \subseteq M$.

- κ is supercompact if for every cardinal μ ≥ κ there is an embedding j : V → M such that μ < j(κ) and ^μM ⊆ M.
- κ is *strong* if for every cardinal $\mu \ge \kappa$ there is an embedding $j: V \to M$ such that $\mu < j(\kappa)$ and $H(\mu) \subseteq M$.
- Suppose $\mu \ge \kappa$ is a cardinal. κ is $H(\mu)$ -hypermeasurable if there is an embedding $j : V \to M$ such that $\mu < j(\kappa)$ and $H(\mu) \subseteq M$.

- κ is supercompact if for every cardinal μ ≥ κ there is an embedding j : V → M such that μ < j(κ) and ^μM ⊆ M.
- κ is *strong* if for every cardinal $\mu \ge \kappa$ there is an embedding $j: V \to M$ such that $\mu < j(\kappa)$ and $H(\mu) \subseteq M$.
- Suppose $\mu \ge \kappa$ is a cardinal. κ is $H(\mu)$ -hypermeasurable if there is an embedding $j : V \to M$ such that $\mu < j(\kappa)$ and $H(\mu) \subseteq M$.
- κ is measurable if it is $H(\kappa^+)$ -hypermeasurable.

- κ is supercompact if for every cardinal μ ≥ κ there is an embedding j : V → M such that μ < j(κ) and ^μM ⊆ M.
- κ is *strong* if for every cardinal $\mu \ge \kappa$ there is an embedding $j: V \to M$ such that $\mu < j(\kappa)$ and $H(\mu) \subseteq M$.
- Suppose $\mu \ge \kappa$ is a cardinal. κ is $H(\mu)$ -hypermeasurable if there is an embedding $j : V \to M$ such that $\mu < j(\kappa)$ and $H(\mu) \subseteq M$.
- κ is measurable if it is $H(\kappa^+)$ -hypermeasurable.

Remark: In a different terminology, "the strongness" of κ is measured by how much of the V hierarchy is included in M: κ is $\kappa + \xi$ -strong if $V_{\kappa+\xi} \subseteq M$.

Suppose κ is supercompact. Then there is a reverse-Easton forcing iteration P_{κ} of length κ , size κ and satisfying κ -cc such that for any \dot{Q} if $P_{\kappa} \Vdash$ " \dot{Q} is κ -directed closed," then

 $P_{\kappa} * \dot{Q} \Vdash$ " κ is supercompact."

Suppose κ is supercompact. Then there is a reverse-Easton forcing iteration P_{κ} of length κ , size κ and satisfying κ -cc such that for any \dot{Q} if $P_{\kappa} \Vdash "\dot{Q}$ is κ -directed closed," then

 $P_{\kappa} * \dot{Q} \Vdash$ " κ is supercompact."

In particular κ is supercompact in $V^{P_{\kappa}}$, and stays supercompact after adding an arbitrary number of Cohen subsets of κ .

Suppose κ is supercompact. Then there is a reverse-Easton forcing iteration P_{κ} of length κ , size κ and satisfying κ -cc such that for any \dot{Q} if $P_{\kappa} \Vdash "\dot{Q}$ is κ -directed closed," then

 $P_{\kappa} * \dot{Q} \Vdash$ " κ is supercompact."

In particular κ is supercompact in $V^{P_{\kappa}}$, and stays supercompact after adding an arbitrary number of Cohen subsets of κ .

• Notice that κ is indestructible by a proper class of forcings while the "Laver preparation" P_{κ} is a set forcing.

Suppose κ is supercompact. Then there is a reverse-Easton forcing iteration P_{κ} of length κ , size κ and satisfying κ -cc such that for any \dot{Q} if $P_{\kappa} \Vdash "\dot{Q}$ is κ -directed closed," then

 $P_{\kappa} * \dot{Q} \Vdash$ " κ is supercompact."

In particular κ is supercompact in $V^{P_{\kappa}}$, and stays supercompact after adding an arbitrary number of Cohen subsets of κ .

- Notice that κ is indestructible by a proper class of forcings while the "Laver preparation" P_{κ} is a set forcing.
- One cannot replace κ-directed closed by κ-closed: the forcing adding a κ-Kurepa tree is a counterexample.

As a convenience device: in many arguments concerning properties whose large-cardinal strength is at least a measurable cardinal, it is useful to assume that after adding new subsets of κ we have a name for a normal measure at κ without an additional argument.

- As a convenience device: in many arguments concerning properties whose large-cardinal strength is at least a measurable cardinal, it is useful to assume that after adding new subsets of κ we have a name for a normal measure at κ without an additional argument.
- As an interesting result in its own right: we can find a forcing P (P_κ in Laver's result) which makes the supercompactness of κ immune to further forcings from a specific (and as large as possible) class of forcings. [A part of the larger program of "undoing" the power of forcing by forcing.]

- As a convenience device: in many arguments concerning properties whose large-cardinal strength is at least a measurable cardinal, it is useful to assume that after adding new subsets of κ we have a name for a normal measure at κ without an additional argument.
- As an interesting result in its own right: we can find a forcing P (P_κ in Laver's result) which makes the supercompactness of κ immune to further forcings from a specific (and as large as possible) class of forcings. [A part of the larger program of "undoing" the power of forcing by forcing.]

This talk prefers to look at this topic from the point (1).

Gitik and Shelah (1989) formulated an analog of Laver's result for strong cardinals (with respect to κ^+ -weakly closed Prikry-style forcing notions), and Hamkins and others for some other large cardinals (Hamkins (2008) for a strongly unfoldable κ with respect to Cohen forcing at κ of arbitrary length, etc.).

¹There are some indestructibility results which are formulated for the first measurable cardinal κ , but κ was supercompact at the beginning.

Gitik and Shelah (1989) formulated an analog of Laver's result for strong cardinals (with respect to κ^+ -weakly closed Prikry-style forcing notions), and Hamkins and others for some other large cardinals (Hamkins (2008) for a strongly unfoldable κ with respect to Cohen forcing at κ of arbitrary length, etc.).

We will discuss in this talk the indestructibility of measurability of κ with respect to Cohen forcing at κ of some bounded length when we start with κ being a $H(\mu)$ -hypermeasurable for some regular $\mu > \kappa$.¹

¹There are some indestructibility results which are formulated for the first measurable cardinal κ , but κ was supercompact at the beginning.

Remark. One can consider indestructibility of other "desirable" properties φ . We just mention one area in this context: suppose $\varphi(\kappa)$ is " κ is regular and greater or equal to \aleph_2 and has the tree property".

Remark. One can consider indestructibility of other "desirable" properties φ . We just mention one area in this context: suppose $\varphi(\kappa)$ is " κ is regular and greater or equal to \aleph_2 and has the tree property".

It is completely open whether the tree property can be forced to be indestructible even for adding a single Cohen real.

Remark. One can consider indestructibility of other "desirable" properties φ . We just mention one area in this context: suppose $\varphi(\kappa)$ is " κ is regular and greater or equal to \aleph_2 and has the tree property".

It is completely open whether the tree property can be forced to be indestructible even for adding a single Cohen real.

Spencer (2012) showed a limited indestructibility of the tree property at \aleph_2 with respect to Cohen forcing at ω of an arbitrary length over the Mitchell model.

The so called "Laver functions". They are available for instance for supercompact and strong cardinals.

- The so called "Laver functions". They are available for instance for supercompact and strong cardinals.
- ② Sum of forcing notions ("lottery sum" of Hamkins).

- The so called "Laver functions". They are available for instance for supercompact and strong cardinals.
- ② Sum of forcing notions ("lottery sum" of Hamkins).

Recall that if \mathbb{R} is a set of forcing notions, then the sum $\bigoplus \mathbb{R}$ is defined as follows: the conditions are of the form (R, p) where $R \in \mathbb{R}$ and $p \in R$, the ordering is $(R, p) \leq (S, q)$ iff R = S and $p \leq_R q$, and we add an artificial greatest condition 1 which is greater than all the (R, p)'s.

Theorem

Assume GCH holds in the ground model V. If κ is H(λ)-hypermeasurable for some regular $\lambda > \kappa^+$, then in some cofinality-preserving generic extension V^{*} of V, Cohen forcing Add(κ, λ) yields the measurability of κ in V^{*}[Add(κ, λ)].

Theorem

Assume GCH holds in the ground model V. If κ is H(λ)-hypermeasurable for some regular $\lambda > \kappa^+$, then in some cofinality-preserving generic extension V^{*} of V, Cohen forcing Add(κ, λ) yields the measurability of κ in V^{*}[Add(κ, λ)].

The proof is based on ideas of Woodin, as written up in a paper by Cummings (1992).

Theorem

Assume GCH holds in the ground model V. If κ is H(λ)-hypermeasurable for some regular $\lambda > \kappa^+$, then in some cofinality-preserving generic extension V^{*} of V, Cohen forcing Add(κ, λ) yields the measurability of κ in V^{*}[Add(κ, λ)].

The proof is based on ideas of Woodin, as written up in a paper by Cummings (1992).

We will show an outline of the proof and indicate some generalisations.

Our V* is of the form V¹[P_κ], where V¹ is an extension of V be a preparation forcing P¹ of size κ (an iteration of length κ) which preserves the hypermeasurability of κ, and P_κ is a standard reverse-Easton iteration. I.e. Starting with V, we define a forcing P¹ * P_κ which will achieve the indestructibility under a specific Cohen forcing.

- Our V* is of the form V¹[P_κ], where V¹ is an extension of V be a preparation forcing P¹ of size κ (an iteration of length κ) which preserves the hypermeasurability of κ, and P_κ is a standard reverse-Easton iteration. I.e. Starting with V, we define a forcing P¹ * P_κ which will achieve the indestructibility under a specific Cohen forcing.
- Let j: V → M witness the H(λ)-hypermeasurability of κ. If U the normal measure derived from j,² let i : V → N be the derived ultrapower via U.

 ${}^{2}X \in U$ iff $\kappa \in j(X)$.

 Using the fast-function forcing of Woodin, we can assume that there is f : κ → κ in V such that j(f)(κ) = λ. Let us denote f(α) by λ_α; let C(f) denote the closed unbounded set of the closure points of f: if α ∈ C(f), then for all β < α, f(β) < α. • P^1 is $\langle (P^1_{\alpha}, \dot{Q}_{\alpha}) | \alpha < \kappa, \alpha$ is measurable, $\alpha \in C(f) \rangle * \dot{Q}_{\kappa}$, with the Easton-support, where

- P^1 is $\langle (P^1_{\alpha}, \dot{Q}_{\alpha}) | \alpha < \kappa, \alpha$ is measurable, $\alpha \in C(f) \rangle * \dot{Q}_{\kappa}$, with the Easton-support, where
- \dot{Q}_{α} is $\bigoplus \mathbb{R}$ where \mathbb{R} contains all the forcings R which satisfy:

- P^1 is $\langle (P^1_{\alpha}, \dot{Q}_{\alpha}) | \alpha < \kappa, \alpha$ is measurable, $\alpha \in C(f) \rangle * \dot{Q}_{\kappa}$, with the Easton-support, where
- \dot{Q}_{α} is $\bigoplus \mathbb{R}$ where \mathbb{R} contains all the forcings R which satisfy:
 - there exists in $V[P^1_{\alpha}]$ a normal measure U_{α} on α such that the derived ultrapower embedding i_{α} satisfies

$$i_{\alpha}: V[P^{1}_{\alpha}] \rightarrow N_{\alpha}[i(P^{1}_{\alpha})]$$

for some N_{α} .

- P^1 is $\langle (P^1_{\alpha}, \dot{Q}_{\alpha}) | \alpha < \kappa, \alpha$ is measurable, $\alpha \in C(f) \rangle * \dot{Q}_{\kappa}$, with the Easton-support, where
- \dot{Q}_{α} is $\bigoplus \mathbb{R}$ where \mathbb{R} contains all the forcings R which satisfy:
 - there exists in $V[P^1_{\alpha}]$ a normal measure U_{α} on α such that the derived ultrapower embedding i_{α} satisfies

$$i_{\alpha}: V[P^1_{\alpha}] \to N_{\alpha}[i(P^1_{\alpha})]$$

for some N_{α} .

• *R* is the forcing $i_{\alpha}(\operatorname{Add}(\alpha, \lambda_{\alpha})^{V[P_{\alpha}^{1}]})$.

- P^1 is $\langle (P^1_{\alpha}, \dot{Q}_{\alpha}) | \alpha < \kappa, \alpha$ is measurable, $\alpha \in C(f) \rangle * \dot{Q}_{\kappa}$, with the Easton-support, where
- \dot{Q}_{α} is $\bigoplus \mathbb{R}$ where \mathbb{R} contains all the forcings R which satisfy:
 - there exists in $V[P^1_{\alpha}]$ a normal measure U_{α} on α such that the derived ultrapower embedding i_{α} satisfies

$$i_{\alpha}: V[P^1_{\alpha}] \to N_{\alpha}[i(P^1_{\alpha})]$$

for some N_{α} .

• *R* is the forcing $i_{\alpha}(\operatorname{Add}(\alpha, \lambda_{\alpha})^{V[P_{\alpha}^{1}]})$.

If $\mathbb R$ is empty, we take \dot{Q}_{lpha} to be the trivial forcing.

• \dot{Q}_{κ} is $\bigoplus \mathbb{R}$ where \mathbb{R} contains all the forcings R which satisfy:

Q_κ is ⊕ ℝ where ℝ contains all the forcings R which satisfy:
 i lifts in V[P¹_κ] to

 $i_{\kappa}: V[P^1_{\kappa}] \to N[i_{\kappa}(P^1_{\kappa})].$

• \dot{Q}_{κ} is $\bigoplus \mathbb{R}$ where \mathbb{R} contains all the forcings R which satisfy: • *i* lifts in $V[P_{\kappa}^{1}]$ to

$$i_{\kappa}: V[P^1_{\kappa}] \to N[i_{\kappa}(P^1_{\kappa})].$$

• *R* is the forcing $i_{\kappa}(\operatorname{Add}(\kappa,\mu)^{V[P_{\kappa}^{1}]})$.

• \dot{Q}_{κ} is $\bigoplus \mathbb{R}$ where \mathbb{R} contains all the forcings R which satisfy: • *i* lifts in $V[P_{\kappa}^{1}]$ to

 $i_{\kappa}: V[P^1_{\kappa}] \to N[i_{\kappa}(P^1_{\kappa})].$

R is the forcing *i_κ*(Add(κ, μ)^{V[P¹_κ]}).
 If R is empty, we take Q_κ to be the trivial forcing.

• \dot{Q}_{κ} is $\bigoplus \mathbb{R}$ where \mathbb{R} contains all the forcings R which satisfy: • *i* lifts in $V[P_{\kappa}^{1}]$ to

 $i_{\kappa}: V[P^1_{\kappa}] \to N[i_{\kappa}(P^1_{\kappa})].$

R is the forcing *i_κ*(Add(*κ*, μ)^{V[P¹_κ]}).
 If R is empty, we take *Q_κ* to be the trivial forcing.
 One can show that *P*¹ preserves cofinalities.

• There is $j^1: V^1 \to M^1$ with critical point κ such that $H(\lambda) \subseteq M^1$ and j^1 restricted to V is the original j.

- There is $j^1: V^1 \to M^1$ with critical point κ such that $H(\lambda) \subseteq M^1$ and j^1 restricted to V is the original j.
- If U^1 is the normal measure derived from j^1 , and $i^1: V^1 \to N^1$ is the ultrapower embedding for U^1 , then in V^1 there is g which is $i^1(P)$ -generic over N^1 , where $P = \text{Add}(\kappa, \lambda)^{V^1}$. i^1 restricted to V is the original *i*.

- There is $j^1: V^1 \to M^1$ with critical point κ such that $H(\lambda) \subseteq M^1$ and j^1 restricted to V is the original j.
- If U¹ is the normal measure derived from j¹, and
 i¹: V¹ → N¹ is the ultrapower embedding for U¹, then in V¹ there is g which is i¹(P)-generic over N¹, where
 P = Add(κ, λ)^{V¹}. i¹ restricted to V is the original i.

The key ingredient is the existence of the filer g in V^1 .

• Define P_{κ} to be the following Easton-supported iteration:

$$\mathcal{P}_{\kappa} = \langle (\mathcal{P}_{\alpha}, \dot{\mathcal{Q}}_{\alpha}) \, | \, \alpha < \kappa \text{ is measurable}, \alpha \in \mathcal{C}(f) \rangle,$$

where \dot{Q}_{α} denotes the forcing Add $(\alpha, \lambda_{\alpha})$, and λ_{α} equals $f(\alpha)$.

The proof finishes with the usual surgery argument with the following lemma due to Woodin (or folklore) which allows us to use the generic filter g added in V^1 (for the i^1 -image of $Add(\kappa, \lambda)^{V^1}$) in the model $V^1[P_{\kappa}]$.

The proof finishes with the usual surgery argument with the following lemma due to Woodin (or folklore) which allows us to use the generic filter g added in V^1 (for the i^1 -image of Add $(\kappa, \lambda)^{V^1}$) in the model $V^1[P_{\kappa}]$.

Lemma. Let *S* be a κ -cc forcing notion of cardinality κ , $\kappa^{<\kappa} = \kappa$. Then for any λ , the term forcing $Q_{\lambda} = \operatorname{Add}(\kappa, \lambda)^{V[S]}/S$ is isomorphic to $\operatorname{Add}(\kappa, \lambda)$.

Some generalisations

 It is not hard see that in V¹[P_κ] = V*, κ is actually no longer measurable: its measurability is resurrected by Add(κ, λ). To ensure measurability of κ in V*, one may use lottery sum again, and prove for instance the following:

Some generalisations

 It is not hard see that in V¹[P_κ] = V*, κ is actually no longer measurable: its measurability is resurrected by Add(κ, λ). To ensure measurability of κ in V*, one may use lottery sum again, and prove for instance the following:

Theorem. Suppose $\lambda = \kappa^{+n}$, for some $1 < n < \omega$, in the argument above. Then one can modify the definition of P_{κ} (with the same P^1) so that κ is measurable in V*, and its measurability is indestructible by $Add(\kappa, \alpha)$ for any $0 < \alpha \le \kappa^{+n}$.

Some generalisations

 It is not hard see that in V¹[P_κ] = V*, κ is actually no longer measurable: its measurability is resurrected by Add(κ, λ). To ensure measurability of κ in V*, one may use lottery sum again, and prove for instance the following:

Theorem. Suppose $\lambda = \kappa^{+n}$, for some $1 < n < \omega$, in the argument above. Then one can modify the definition of P_{κ} (with the same P^1) so that κ is measurable in V*, and its measurability is indestructible by $Add(\kappa, \alpha)$ for any $0 < \alpha \le \kappa^{+n}$.

Hint: Set \dot{Q}_{α} in P_{κ} to be equal to $\bigoplus \mathbb{S}$, where $\mathbb{S} = \{1\} \cup \{\operatorname{Add}(\alpha, \alpha^{+k}) \mid 0 \le k \le n\}.$

The following can probably be obtained using the ideas in the proof:

The following can probably be obtained using the ideas in the proof:

 GCH. Suppose λ > κ⁺ is regular and κ is H(λ)-hypermeasurable. Is there a forcing P¹ * P_κ which forces that the measurability of κ is indestructible by Add(κ, α) for any 0 < α ≤ λ?